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Atherosclerosis, the underlying cause of heart attack and strokes, is a progressive dyslipidaemic and inflammatory disease where
monocyte-derived macrophage cells play a pivotal role. Although most of the mechanisms that contribute to the progression of
atherosclerosis have been identified, there is limited information on those governing regression. Conjugated linoleic acid (CLA) is
a generic term denoting a group of naturally occurring isomers of linoleic acid (18:2, n6) that differ in the position or geometry
(i.e. cis or trans) of their double bonds. Themost predominant isomers in ruminant fats are cis-9, trans-11 CLA (c9,t11-CLA), which
accounts for more than 80% of CLA isomers in dairy products and trans-10, cis-12 CLA (t10,c12-CLA). Dietary administration of a
blend of the two most abundant isomers of CLA has been shown to inhibit the progression and induce the regression of pre-
established atherosclerosis. Studies investigating the mechanisms involved in CLA-induced atheroprotective effects are
continually emerging. The purpose of this review is to discuss comprehensively the effects of CLA on monocyte/macrophage
function in atherosclerosis and to identify possible mechanisms through which CLA mediates its atheroprotective effects.
Atherosclerosis
Atherosclerosis is a complex inflammatory disease that is
characterized by the progressive formation of lipid laden fi-
brous plaques within the arterial wall [1]. This chronic disease
arises from a maladaptive inflammatory response, an im-
paired resolution process and a defective lipid metabolism
[2]. Progressive damage to the vessel wall culminates in arte-
rial occlusion resulting in stenosis or lesion rupture triggering
thrombosis. Atherosclerosis is the underlying cause of ischae-
mic events and often the first clinical manifestation of ath-
erosclerosis is myocardial infarction or stroke [3]. There are
multiple risk factors associated with the development of
atherosclerosis. The non-modifiable risk factors include age-
ing [4], gender [5] and family history [6]. The modifiable risk
factors include elevated concentrations of low density lipo-
protein (LDL) cholesterol [7], low concentrations of high
density lipoprotein (HDL) cholesterol [8], elevated blood
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pressure [9], diabetes [10], metabolic syndrome [11], obesity
[12], physical inactivity [13], cigarette smoking [14, 15] and
a diet high in saturated fat, trans fat [16] and cholesterol.

The development of the atherosclerotic lesion is initiated by
endothelial dysfunction at arterial branch points or locations of
altered blood flow [2]. These endothelial alterations facilitate the
passage and retention of macromolecules such as LDL mole-
cules within the intima layer [17]. Subsequent oxidation of
LDL within the subendothelium by reactive oxygen species
(ROS) triggers an inflammatory response [18] characterized by
the recruitment of inflammatory cells to the site of endothelial
damage. The majority of leukocytes within the developing ath-
erosclerotic lesion are monocytes and macrophages [19]. Oxi-
dized LDL (oxLDL), direct arterial injury, cytokines and growth
factors stimulate the secretion of chemokines such asmonocyte
chemoattractant protein-1 (MCP-1) and interleukin (IL)-8 from
endothelial cells, smoothmuscle cells and leukocytes [20]. Both
MCP-1 and oxLDL recruit monocytes to the vessel wall [18, 21].
DOI:10.1111/bcp.12948
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Monocyte–endothelial interaction is necessary for the extrava-
sation of circulatingmonocytes into the tissue [22]. This interac-
tion is mediated by chemokines which facilitate the
recruitment, tethering and rolling processes that occur at the
vessel wall. Monocyte adhesion to the vessel wall is facilitated
by key adhesion ligands onmonocytes, β1-integrin cluster of dif-
ferentiation (CD)49d/CD29 (VLA-4) and β2-integrin CD11b/
CD18 (Mac-1). These ligands bind to vascular cell adhesion
molecule 1 (VCAM-1) and intracellular cell adhesion molecule
1 (ICAM-1) located on endothelial cells [23, 24]. This receptor–
ligand interaction facilitates the transendothelial migration of
monocytes into the vessel intima.Macrophage colony stimulat-
ing factor (M-CSF) induces the differentiation of monocytes to
macrophages [25].Macrophages respond to extracellular and in-
tracellular signals such as the tissuemicroenvironment [26] and
lipid derivatives within the intracellular environment [27].
These factors determine macrophage phenotypic polarization
resulting in high levels of heterogeneity and plasticity among
macrophage subpopulations [28].

The predominant macrophage phenotypes are character-
ized as MΦ1 ‘classically’ activated and MΦ2 ‘alternatively’ ac-
tivated. Macrophages exhibit plasticity as they can
interchange between MΦ1 and MΦ2 based on intercellular
and extracellular stimuli [29]. MΦ1 polarization is induced
by T helper (TH) 1 cytokines including interferon-gamma
(IFN-γ), IL-1β, and the gram negative bacterial toxin, lipo-
polysaccharide (LPS). This MΦ1 subset has a pro-inflamma-
tory phenotype secreting pro-inflammatory cytokines and
mediators such as tumour necrosis factor-alpha (TNF-α), IL-6
and IL-12. MΦ2 polarization is induced by certain lipid prod-
ucts and by several TH2 cytokines including IL-4, IL-13 and
IL-10 [30, 31]. The MΦ2 subset has an anti-inflammatory or
pro-resolving profile as they produce IL-10, IL-1 receptor an-
tagonist (RA) and transforming growth factor-beta (TGF-β)
[31]. In addition, they increase efferocytosis of debris and
promote a pro-resolving environment.

Through receptor-mediated endocytosis macrophages
take up oxLDL via CD36 and scavenger receptor (SR)-A1.
These macrophages have a cholesterol transport system in
which processed cholesterol is effluxed via ATP-binding cas-
sette transporter A1 (ABCA-1), ABCG-1 and SR-BI proteins
to acceptor molecules to prevent the internal accumulation
of excess LDL and free cholesterol [32]. Apolipoprotein
(apo)-A1 and HDL, acceptor molecules, shuttle the choles-
terol to the liver as part of a process known as reverse
cholesterol transport (RCT) [33]. Disruption to this transport
system occurs when cholesterol influx exceeds efflux or when
acetyl-coA cholesterol acetyltransferase (ACAT)-1-mediated
esterification is impaired [34]. This can be due to overloading
of lysosomal capacity to transport free cholesterol, a reduc-
tion in ABCA-1 and SR-BI, the plasma membrane proteins
that mediate efflux or through lack of cholesterol acceptor
molecules within the intima [32, 35]. Macrophage foam cells,
laden with cholestryl esters, are a predominant feature of
early atherosclerotic lesions [36]. Excessive oxLDL accumula-
tion results in foam cell formation and can activate cellular
apoptosis or necrosis [37]. Smooth muscle cells and macro-
phages often undergo apoptosis due to the impaired removal
of apoptotic bodies and they can accumulate within the
lesion. These apoptotic cells can inhibit maintenance or re-
pair of the extracellular membrane (ECM) thus further
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destabilizing the plaque [38]. Many plaques consist of apo-
ptotic cells and necrotic cells, along with calcified and fibrotic
elements which all contribute to atherosclerotic lesion for-
mation [39]. Park et al. demonstrated that oxLDL-CD36 inter-
action inhibits the egress of murine and humanmacrophages
out of atherosclerotic lesions [40, 41]. This receptor–ligand
binding mediates pro-inflammatory effects [42]. Macrophage
survival, accumulation and dysfunction impair the resolu-
tion process and drive atherosclerotic lesion development.

Most of the current therapies for the treatment of athero-
sclerosis target one or more risk factors of the disease. These
include reduction of circulating LDL cholesterol using
statins, anti-hypertensives, anti-coagulants and oral
hypoglycaemic agents. However, there are no therapies avail-
able which target the inflammatory component of athero-
sclerosis and importantly there are none available which are
designed to mediate regression or promote pro-resolving
effects on pre-established disease. The implications of this
are important as most patients present with established dis-
ease. There is evidence in animal models which suggests that
induction of lesion regression may be a viable therapeutic
strategy [43]. Reis et al. demonstrated remodelling and regres-
sion of advanced atherosclerotic lesions in murine models.
Administration of a high cholesterol Western diet to apoE
knockout (�/�) mice, induced hypercholesterolaemia and
the formation of advanced atherosclerotic lesions. These le-
sions were then transplanted to wild type (WT)
(normocholestrolaemia) mice and to apoE�/� mice fed on a
normal cholesterol diet. Whilst lesions continued to develop
in the apoE�/� mice, in the WT mice with a normalized
plasma lipoprotein profile, there was a reduction in the lesion
size, macrophage content, VCAM-1 expression and foam cell
numbers in the intimal and medial layers [44]. This provides
evidence that atherosclerotic lesions are dynamic and can un-
dergo remodelling and regression.
Conjugated linoleic acid
CLA is a generic term denoting a group of naturally occurring
isomers of linoleic acid (18:2, n6) that differ in the position or
geometry (i.e. cis or trans) of their double bonds [45]. CLA iso-
mers are naturally present in the lipid fraction of ruminant
derived products including milk, dairy and beef products
[46, 47]. The major source of CLA in the human diet is
through the consumption of ruminant meats such as beef
and lamb [48] and from high fat dairy products such as whole
milk (3% fat), full fat culturedmilk, mainly sourmilk (3% fat),
cheese, mainly hard cheese (28% fat), cream (40% fat), full fat
sour cream (34% fat), reduced fat sour cream (17% fat) and
butter (80% fat) [49]. Daily consumption of low fat dairy
products included low fat milk (0.5% fat), medium fat milk
(1.5% fat) and low fat cultured milk (0.5% fat) [49]. Grass
fed cattle produce the highest levels of CLA. Cattle fed a diet
rich in polyunsaturated fatty acids have increased concentra-
tions of CLA in their milk [50, 51]. There are also dietary CLA
supplements that are commercially available. On average
humans consume between 15–430 mg of CLA day–1 [52].
However in animal studies, CLA effects are only observed at
a dose that is approximately 10 times higher [52]. Different
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CLA isomers are synthesized through a variety of mecha-
nisms by bacteria and digesta present in the rumen [53].
There are 28 known CLA isomers with c9,t11-CLA, which ac-
counts for 80% of CLA intake in the diet and t10,c12-CLA
being the two most abundant. The biological activities of
CLA have received considerable attention over the past
number of years due to their documented anti-cancer, anti-
atherogenic and anti-diabetic effects. However, individual
isomers can have divergent effects and their effects are not
predictable when combined.
Benefits of CLA on human health
CLA isomers have been found to have both synergistic and
antagonistic effects on cellular functions resulting in alter-
ations in function and metabolism. The effect of the isomers
has been notably different between strains of animals and
species, where CLA is primarily associated with advantages
to health showing reduced adiposity, improved metabolism
of plasma lipoprotein [54], insulin sensitivity [55] and de-
creased atherosclerosis [56]. Unfortunately, not all of these
health benefits in animal models have translated well into
clinical studies investigating the effects of CLA on human
health. However, CLA blends enriched in c9,t11 and t10,c12
isomers have been identified as safe and effective in humans
[52].

CLA dietary supplementation, using a 50 : 50 blend of c9,
t11 : t10 , c12-CLA, has shown reductions in fat mass in both
overweight and obese adults and children [57, 58], increased
HDL cholesterol and decreased the ratio of LDL : HDL choles-
terol in type 2 diabetes [59], diminished incidence of athero-
sclerosis in sedentary young adults [60]. Also c9,t11-CLA
supplementation lowered the risk of CVD in men [61] and it
was found that women who consumed four or more servings
of high fat dairy foods rich in CLA reduced their risk of devel-
oping distal colon cancer by 34%, when compared with
women who consumed less than one serving per day [49].
There was also a 35% reduction in the risk of colorectal cancer
(CRC) in women who consumed at least three servings of
cheese day–1 [49]. Noone et al. investigated the effects of
CLA on cardiovascular disease risk factors in 51 healthy hu-
man subjects. In this 8 week, randomized, double-blind pla-
cebo study, c9,t11-CLA and t10,c12-CLA isomers were
investigated using linoleic acid as the control. The group re-
ceiving the 50 : 50 CLA blend showed significantly decreased
fasting plasma triacylglycerol (TAG) concentrations. Elevated
plasma TAG concentrations are a risk factor of ischaemic
heart disease [62]. Very low density lipoprotein (VLDL) cho-
lesterol concentrations were significantly reduced in the
group receiving the 80 : 20 CLA blend [63]. The effects of
CLA supplementation on the immune system were investi-
gated in 28 young healthy volunteers. In this 12 week study,
volunteers received a dietary supplement of 3 g day–1 of c9,
t11 : t10,c11-CLA blend (50 : 50). In CLA supplemented
volunteers there was a significant increase in the anti-inflam-
matory cytokine IL-10, a decrease in pro-inflammatory cyto-
kines TNF-α and IL-1β and a decrease in delayed-type
hypersensitivity (DTH) response [64]. Interestingly in a
separate study in humans with birch pollen allergy, c9,
t11-CLA supplementation (2 g day–1, 12 weeks) significantly
reduced granulocyte M-CSF (GM-CSF), a known driver of
the pro-inflammatoryMΦ1phenotype [65]. However, other stud-
ies have shown there to be no change in body composition [66]
or immune function [67] following CLA supplementation. There
is a need for further rigorous clinical investigation into the bene-
fits of CLA supplementation and for characterization of the
optimum blend of CLA to use in humans.
Effects of CLA on inflammation
In vivo studies have demonstrated that CLA has effects on dis-
eases with an inflammatory component. In murine studies
administration of t10,c12-CLA resulted in body composition
changes most notably a reduction in body fat [68]. CLA treat-
ments in AKR/J mice also reduced body fat via a reduction in
energy intake and a reduction in metabolic rate [69]. Further
studies in AKR/J mice also demonstrated a rapid decrease in
fat accumulation on mice fed relatively low doses of CLA
[70]. In Zucker diabetic fatty (ZDF) rats, c9,t11-CLA and c10,
t12-CLA isomers in a 50 : 50 blend given as a dietary supple-
ment improved glucose tolerance and decreased adiposity
[71]. This same 50 : 50 CLA blendwas used as a dietary supple-
ment in a pig model of dextrin sodium sulfate (DSS)-induced
colitis. Dietary CLA supplementation induced the up-regula-
tion of peroxisome proliferator activated-receptor (PPAR)-γ
expression and was found to delay the development of DSS-
induced colitis [72]. Further studies indicate that PPAR-γ acti-
vation causes the down regulation of effector CD4+ T cell
function which is the primary mediator of colitis [73]. In ad-
dition to the PPAR-γ-dependent effects of CLA, studies in
mouse models of DSS-induced colitis and CD4-induced coli-
tis have shown that CLA blend (50 : 50 blend of c9,t11-CLA
and t10,c12-CLA isomers) repressed TNF-α and nuclear fac-
tor-kappa B (NF-κB) activation and induced the expression
of PPAR-γ coactivator 1-alpha (PGC-1α) and TGF-β1 [74]. Mice
with inflammation induced CRC were fed a 50 : 50 blend of
the c9,t11-CLA and t10,c12-CLA isomers. Through activation
of PPAR-γ the development of the CRC was ameliorated thus
demonstrating the chemoprotective properties of CLA on gut
malignancies. Tumor development and colonic TNF-α were
also suppressed in mice on the CLA diet [75]. Together this
suggests that CLA isomers have positive physiological effects
on diseases which have an inflammatory component.
Effect of CLA on atherosclerosis
The two most abundant CLA isomers have been shown to
have anti-atherogenic effects in an experimental model of
atherosclerosis when administered in an 80 : 20 blend [76].
CLA has been shown to induce the regression of atherosclero-
sis in mice, rabbits and hamsters. However, Arbonés-Mainar
et al. demonstrated that different CLA isomers have different
atherogenic effects. ApoE�/� mice fed on a Western diet
(0.15% cholesterol) were supplemented with either c9,
t11-CLA, t10,c12-CLA or linoleic acid (control diet) for
12 weeks. Development of atherosclerotic lesions was im-
paired in mice fed with c9,t11-CLA. In contrast, pro-
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atherogenic effects were observed in the mice receiving t10,
c12-CLA. Some of these effects included hyperlipidaemia, el-
evated macrophage content and activation and high plaque
vulnerability in comparison with controls [77]. In the Belton
group, we have previously demonstrated that the c9,t11 : t10,
c12-CLA (80 : 20) blend not only inhibited the progression of
atherosclerosis but induced regression of the lesions in a
mouse model of atherosclerosis. Atherosclerosis was induced
in apoE�/� mice through administration of a 1% cholesterol
diet for 8 weeks. Mice were continued on the diet supple-
mented with 1% saturated fat (control) or 1% CLA blend
(c9,t11 : t10,c12-CLA 80 : 20) for a further 8 weeks. Mice fed
the supplemented CLA diet displayed almost complete re-
gression of aortic atherosclerotic lesions. In comparison with
controls, CLA-fed mice also had decreased aortic macrophage
accumulation and decreased expression of CD36 [76]. In-
creased expression of PPAR-α and PPAR-γ within the aortas
and the negative regulation of pro-inflammatory gene expres-
sion were also detected suggesting that CLA exerts its pro-re-
solving effects at least in part via activation of PPARs [76]. In
a study by Lee et al. rabbits were put on a diet rich in fat
(14% fat and 0.1% cholesterol) for 22 weeks in the presence
or absence of 0.5 g of CLA day–1. In the CLA fed group LDL
concentrations were markedly lower and there was less evi-
dence of atherosclerosis [54]. In a separate study it was shown
that CLA-fed hamsters had reduced concentrations of plasma
total cholesterol, LDL and triglycerides in comparison with
the control group and also had less early atherosclerotic le-
sion development [56]. Together the data from in vivo studies
suggest that CLA mediates its effects in atherosclerosis via in-
hibition of the inflammatory response and by modulation of
circulating cholesterol.
CLA modulates monocyte/macrophage
function
As described above monocytes and macrophages play a piv-
otal role in atherosclerotic lesion initiation and develop-
ment. Our work has shown that in the apoE�/� model of
atherosclerosis, CLA promotes a pro-resolving microenvi-
ronment [76], and our work and that of others have identi-
fied that the monocyte/macrophage is the cellular target
through which CLA mediates regression of atherosclerosis
in vivo [76].

Dysfunctional endothelial cells and subsequent mono-
cyte recruitment is a hallmark in the pathogenesis of athero-
sclerosis [78]. VLA-4 and Mac-1 are key adhesion ligands on
monocytes that bind VCAM-1 and ICAM-1, respectively, on
endothelial cells, allowing for monocyte adhesion to the ves-
sel wall [23, 24]. It has been shown that c9,t11-CLA and t10,
c12-CLA isomers limited VLA-4 and Mac-1 expression on
monocytes [79]. VCAM-1 and ICAM-1 expression on endo-
thelial cells was only reduced after treatment with the c9,
t11-CLA isomer [79]. This suggests CLA can modulate the
adherence of monocytes to endothelial cells, unfolding a
potential protective mechanism in early atherosclerosis.

Accumulation and migration of monocytes and macro-
phages arises due to elevated levels of MCP-1, and this has been
reported in atherosclerotic plaques [80]. It has been shown that
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mice deficient in MCP-1 have significantly reduced atheroscle-
rosis [81], highlighting the importance of monocyte migration
as a critical step in the development of the disease.

CLA has been shown to inhibit monocyte migration to
MCP-1 in vitro via a PPAR-γ dependent mechanism [82]. How-
ever, CCR2, the receptor for MCP-1, was not affected by CLA
[82]. Subsequent studies showed that CLA inhibits the
production of MCP-1, explaining the reduced migratory
phenotypes of CLA-treated macrophages [82]. This implies
CLA is a potent inhibitor of monocyte migration in vitro and
may have promise in combating migratory pathogenic
monocytes in atherosclerosis.

Macrophages of both a ‘classical’ MΦ1 and ‘alternative’
MΦ2 phenotype have been found in human atherosclerotic
lesions [83]. It has been shown that the MΦ1 macrophage
content of atherosclerotic plaques is associated with the clin-
ical incidence of ischaemic stroke and increased inflamma-
tion or fibrinolysis [84]. In the context of atherosclerosis, it
has been shown that there is an MΦ2 to MΦ1 switch during
plaque progression. This is likely due to a conversion of cells
already present in the lesion, suggesting that interventional
tools, able to revert the macrophage infiltrate towards the
MΦ2 phenotype, may exert an atheroprotective action. We
have shown that CLA primes monocytes towards a pro-re-
solving MΦ2 macrophage [85]. The 80 : 20 blend of c9,
t11 : t10,c12-CLA impacted on macrophage polarization by
reducing expression of the MΦ1 macrophage marker CD68
[85] and increasing expression of CD163 and mannose recep-
tor, receptors associated with the MΦ2 anti-inflammatory
phenotype, in human peripheral blood mononuclear cell
(PBMC)-derived macrophages [85]. Interestingly, this effect
was mediated in part via a PPAR-γ dependent mechanism.
These data supports the findings of a previous study carried
out by Bouhlel et al. where PPAR-γ activation was associated
with MΦ2 differentiation and increased the expression of
the mannose receptor MΦ2marker in PBMCs [86]. In another
study, IL-1RA was upregulated in CLA-treated RAW 264.7
macrophages and this correlated with decreased secretion of
IL-1α, IL-1β and IL-6 pro-inflammatory MΦ1 cytokines [87].
This effect in RAW 264.7 macrophages was only observed
using the c9,t11-CLA isomer [87]. We have confirmed these
findings in vivo where we showed that CLA supplementation
in apoE�/� mice induced the anti-inflammatory MΦ2 pheno-
type via increasing IL-10 production in atherosclerosis
regression (88). Together this suggests that CLA primes the
monocyte/macrophage towards a pro-resolving MΦ2 pheno-
type to exert atheroprotective effects. However, comprehen-
sive characterization of CLA treated monocytes and
macrophages warrants further investigation, specifically in
the context of macrophage plasticity.
CLA limits foam cell formation
Uptake of oxLDL by macrophages, via scavenger receptors
CD36 and SR-A1, is important for foam cell formation and
subsequent fatty streak development [89]. CLA promotes
atheroprotection, by inhibiting foam cell formation and reg-
ulating expression of RCT genes, thus enhancing the removal
of cholesterol from the circulation [90, 91]. Documented
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targets of CLA include the nuclear receptor liver X receptor al-
pha (LXRα) and cholesterol efflux genes such as ABCA1 and
ABCG1 [91, 92]. It has been shown that c9,t11-CLA acts as a
direct agonist for LXRα [92]. We have also verified this,
showing that CLA inhibits foam cell formation in vitro via a
PPAR-γ- and LXRα-dependent mechanism [85].
CLA reduces inflammatory mediators
Fatty acids have been found to decrease the inflammatory
output of the macrophage, which shows the potential
therapeutic benefit of CLA in targeting the inflammatory
component of atherosclerosis [56, 93, 94]. In RAW 264.7
macrophages and PBMCs stimulated with LPS, a potent
activator of the inflammatory pathway, NF-κB, as well as pros-
taglandin E2 (PGE2) and cyclo-oxygenase-2 (COX-2) were
attenuated upon treatment with both c9:t11-CLA and t10,
c12-CLA [95, 96]. The result indicates that CLA has the capac-
ity to act as an anti-inflammatory modulator of monocytes
and macrophages. Similarly Yu et al. used a 50 : 50 blend of
the c9,t11-CLA and t10,c12-CLA isomers and found a reduc-
tion in inducible nitric oxide synthase (iNOS) and PGE2 in
RAW 264.7 macrophages [97]. This study also highlighted
the importance of CLA as an anti-inflammatory lipid as it
revealed a reduction in the expression of the pro-inflammatory
cytokines IL-1β, TNF-α and IL-6 [97]. These mediators are
hallmarks of the pro-inflammatory macrophage phenotype
(MΦ1), characteristic of atherosclerosis progression.

IL-10, a potent anti-inflammatory cytokine, has been
identified in atherosclerotic plaques and is predominantly se-
creted from macrophages [98]. Decreased levels of iNOS, an
MΦ1 macrophage marker, were associated with high levels
of IL-10 expression and, inversely, plaques with elevated
iNOS correlated with minimal IL-10 expression and more fre-
quent cell death [98], indicating a strong association of cell
death with IL-10 expression. Studies investigating the effects
of CLA on IL-10 to date have been sparse. However we have
demonstrated in vivo that components of the IL-10 signalling
pathway were modified with CLA treatment [88]. We have re-
ported increased IL-10 receptor expression, increased
phosphorylation of signal transducer and activator of tran-
scription 3 (STAT3) in the aorta and an increase in serum
IL-10 concentrations in CLA-induced regression (88).
Furthermore, CLA-induced IL-10 production diminished
TNF-α concentrations thus contributing to regression of
pre-established atherosclerosis [88]. Thus CLA impacts on
macrophage phenotype and inflammatory mediators enabling
regression of established plaques in atherosclerosis models.
CLA as an agonist for PGC-1α
CLA, as mentioned, inhibits monocyte/macrophage adhe-
sion, migration, differentiation of classical macrophages,
foam cell formation and generation of inflammatory media-
tors via a PPAR-γ dependent and independent mechanism.
To elucidate if there was a common mechanism regulating
the aforementioned atheroprotective effects of CLA we per-
formed transcriptomic analysis of the aorta from CLA fed
apoE�/� mice. This study identified several ‘hub genes’ regu-
lated by CLA, most notably PGC-1α [90]. PGC-1α is a tran-
scriptional co-activator of several nuclear receptors and has
recently been established as a mediator in atheroprotection
in vivo [90]. In apoE�/� PGC-1α gene expression was localized
to the macrophage cells of the aorta. CLA supplementation
increased PGC-1α gene expression and, interestingly, expres-
sion was inversely correlated with lesion burden [90]. Fur-
thermore, in RAW 264.7 macrophages treated with CLA and
oxLDL there was increased PGC-1α expression and increased
expression of PGC-1α target genes, namely uncoupling pro-
tein 1 (UCP-1) and cytochrome P450, family 7, subfamily
B1 (CYP7B1) [90]. PGC-1α expression was associated with de-
creased oxLDL uptake and decreased foam cell formation
[90]. The importance of macrophage PGC-1α in atherosclero-
sis was confirmed when macrophage specific deletion of
PGC-1α accelerated atherosclerosis in the LDL receptor�/�

(LDLR�/�) mouse [90]. Finally, we localized PGC-1α to macro-
phages and foam cells of human atherosclerotic plaques and
showed that its expression was inversely associated with
disease progression. This suggests that the molecular mecha-
nism through which CLA mediates the resolution of
atherosclerosis is via regulation of PGC-1α.
Conclusion
Macrophage accumulation and foam cell formation after
lipid acquisition is a classic hallmark of atherogenesis. While
there is much information on the cellular and molecular me-
diators in the pathogenesis of atherosclerosis there is limited
information on the pathways involved in disease regression.
The implications of this are important since most patients
present with pre-established lesions and the therapeutic goal
would be to reverse the lesion. Our work and that of others
has shown that a specific blend of CLA isomers, not only in-
hibits progression, but induce regression of pre-established
atherosclerosis in apoE�/� mice. Furthermore, it is now
established that the monocyte/macrophage is the cellular tar-
get through which CLAmediates its effect. It has been shown
both in vitro and in vivo that CLA inhibits monocyte adhe-
sion, monocyte migration and inhibits uptake of LDL choles-
terol by macrophages [90–92]. The atheroprotective effects of
CLA have facilitated identification of a number of potential
mechanisms underlying regression and the data suggest that
CLA is a pro-resolving lipid mediator which alters the lesion
microenvironment. The effects of CLA isomers on the devel-
opment, progression and resolution of atherosclerosis con-
tinue to be thoroughly investigated to yield further
information as to how CLAmodulates and induces regression
of atherosclerosis.
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